#include "IRremote.h" #include "IRremoteInt.h" //+============================================================================= // Decodes the received IR message // Returns 0 if no data ready, 1 if data ready. // Results of decoding are stored in results // int IRrecv::decode (decode_results *results) { results->rawbuf = irparams.rawbuf; results->rawlen = irparams.rawlen; results->overflow = irparams.overflow; if (irparams.rcvstate != STATE_STOP) return false ; #if DECODE_NEC DBG_PRINTLN("Attempting NEC decode"); if (decodeNEC(results)) return true ; #endif #if DECODE_SONY DBG_PRINTLN("Attempting Sony decode"); if (decodeSony(results)) return true ; #endif #if DECODE_SANYO DBG_PRINTLN("Attempting Sanyo decode"); if (decodeSanyo(results)) return true ; #endif #if DECODE_MITSUBISHI DBG_PRINTLN("Attempting Mitsubishi decode"); if (decodeMitsubishi(results)) return true ; #endif #if DECODE_RC5 DBG_PRINTLN("Attempting RC5 decode"); if (decodeRC5(results)) return true ; #endif #if DECODE_RC6 DBG_PRINTLN("Attempting RC6 decode"); if (decodeRC6(results)) return true ; #endif #if DECODE_PANASONIC DBG_PRINTLN("Attempting Panasonic decode"); if (decodePanasonic(results)) return true ; #endif #if DECODE_LG DBG_PRINTLN("Attempting LG decode"); if (decodeLG(results)) return true ; #endif #if DECODE_JVC DBG_PRINTLN("Attempting JVC decode"); if (decodeJVC(results)) return true ; #endif #if DECODE_SAMSUNG DBG_PRINTLN("Attempting SAMSUNG decode"); if (decodeSAMSUNG(results)) return true ; #endif #if DECODE_WHYNTER DBG_PRINTLN("Attempting Whynter decode"); if (decodeWhynter(results)) return true ; #endif #if DECODE_AIWA_RC_T501 DBG_PRINTLN("Attempting Aiwa RC-T501 decode"); if (decodeAiwaRCT501(results)) return true ; #endif #if DECODE_DENON DBG_PRINTLN("Attempting Denon decode"); if (decodeDenon(results)) return true ; #endif #if DECODE_LEGO_PF DBG_PRINTLN("Attempting Lego Power Functions"); if (decodeLegoPowerFunctions(results)) return true ; #endif // decodeHash returns a hash on any input. // Thus, it needs to be last in the list. // If you add any decodes, add them before this. if (decodeHash(results)) return true ; // Throw away and start over resume(); return false; } //+============================================================================= IRrecv::IRrecv (int recvpin) { irparams.recvpin = recvpin; irparams.blinkflag = 0; } IRrecv::IRrecv (int recvpin, int blinkpin) { irparams.recvpin = recvpin; irparams.blinkpin = blinkpin; pinMode(blinkpin, OUTPUT); irparams.blinkflag = 0; } //+============================================================================= // initialization // #ifdef USE_DEFAULT_ENABLE_IR_IN void IRrecv::enableIRIn ( ) { // Interrupt Service Routine - Fires every 50uS cli(); // Setup pulse clock timer interrupt // Prescale /8 (16M/8 = 0.5 microseconds per tick) // Therefore, the timer interval can range from 0.5 to 128 microseconds // Depending on the reset value (255 to 0) TIMER_CONFIG_NORMAL(); // Timer2 Overflow Interrupt Enable TIMER_ENABLE_INTR; TIMER_RESET; sei(); // enable interrupts // Initialize state machine variables irparams.rcvstate = STATE_IDLE; irparams.rawlen = 0; // Set pin modes pinMode(irparams.recvpin, INPUT); } #endif // USE_DEFAULT_ENABLE_IR_IN //+============================================================================= // Enable/disable blinking of pin 13 on IR processing // void IRrecv::blink13 (int blinkflag) { #ifdef BLINKLED irparams.blinkflag = blinkflag; if (blinkflag) pinMode(BLINKLED, OUTPUT) ; #endif } //+============================================================================= // Return if receiving new IR signals // bool IRrecv::isIdle ( ) { return (irparams.rcvstate == STATE_IDLE || irparams.rcvstate == STATE_STOP) ? true : false; } //+============================================================================= // Restart the ISR state machine // void IRrecv::resume ( ) { irparams.rcvstate = STATE_IDLE; irparams.rawlen = 0; } //+============================================================================= // hashdecode - decode an arbitrary IR code. // Instead of decoding using a standard encoding scheme // (e.g. Sony, NEC, RC5), the code is hashed to a 32-bit value. // // The algorithm: look at the sequence of MARK signals, and see if each one // is shorter (0), the same length (1), or longer (2) than the previous. // Do the same with the SPACE signals. Hash the resulting sequence of 0's, // 1's, and 2's to a 32-bit value. This will give a unique value for each // different code (probably), for most code systems. // // http://arcfn.com/2010/01/using-arbitrary-remotes-with-arduino.html // // Compare two tick values, returning 0 if newval is shorter, // 1 if newval is equal, and 2 if newval is longer // Use a tolerance of 20% // int IRrecv::compare (unsigned int oldval, unsigned int newval) { if (newval < oldval * .8) return 0 ; else if (oldval < newval * .8) return 2 ; else return 1 ; } //+============================================================================= // Use FNV hash algorithm: http://isthe.com/chongo/tech/comp/fnv/#FNV-param // Converts the raw code values into a 32-bit hash code. // Hopefully this code is unique for each button. // This isn't a "real" decoding, just an arbitrary value. // #define FNV_PRIME_32 16777619 #define FNV_BASIS_32 2166136261 long IRrecv::decodeHash (decode_results *results) { long hash = FNV_BASIS_32; // Require at least 6 samples to prevent triggering on noise if (results->rawlen < 6) return false ; for (int i = 1; (i + 2) < results->rawlen; i++) { int value = compare(results->rawbuf[i], results->rawbuf[i+2]); // Add value into the hash hash = (hash * FNV_PRIME_32) ^ value; } results->value = hash; results->bits = 32; results->decode_type = UNKNOWN; return true; }