Mikanum/IRremote/irPronto.cpp
2023-01-19 08:45:51 +01:00

514 lines
15 KiB
C++

#define TEST 0
#if TEST
# define SEND_PRONTO 1
# define PRONTO_ONCE false
# define PRONTO_REPEAT true
# define PRONTO_FALLBACK true
# define PRONTO_NOFALLBACK false
#endif
#if SEND_PRONTO
//******************************************************************************
#if TEST
# include <stdio.h>
void enableIROut (int freq) { printf("\nFreq = %d KHz\n", freq); }
void mark (int t) { printf("+%d," , t); }
void space (int t) { printf("-%d, ", t); }
#else
# include "IRremote.h"
#endif // TEST
//+=============================================================================
// Check for a valid hex digit
//
bool ishex (char ch)
{
return ( ((ch >= '0') && (ch <= '9')) ||
((ch >= 'A') && (ch <= 'F')) ||
((ch >= 'a') && (ch <= 'f')) ) ? true : false ;
}
//+=============================================================================
// Check for a valid "blank" ... '\0' is a valid "blank"
//
bool isblank (char ch)
{
return ((ch == ' ') || (ch == '\t') || (ch == '\0')) ? true : false ;
}
//+=============================================================================
// Bypass spaces
//
bool byp (char** pcp)
{
while (isblank(**pcp)) (*pcp)++ ;
}
//+=============================================================================
// Hex-to-Byte : Decode a hex digit
// We assume the character has already been validated
//
uint8_t htob (char ch)
{
if ((ch >= '0') && (ch <= '9')) return ch - '0' ;
if ((ch >= 'A') && (ch <= 'F')) return ch - 'A' + 10 ;
if ((ch >= 'a') && (ch <= 'f')) return ch - 'a' + 10 ;
}
//+=============================================================================
// Hex-to-Word : Decode a block of 4 hex digits
// We assume the string has already been validated
// and the pointer being passed points at the start of a block of 4 hex digits
//
uint16_t htow (char* cp)
{
return ( (htob(cp[0]) << 12) | (htob(cp[1]) << 8) |
(htob(cp[2]) << 4) | (htob(cp[3]) ) ) ;
}
//+=============================================================================
//
bool sendPronto (char* s, bool repeat, bool fallback)
{
int i;
int len;
int skip;
char* cp;
uint16_t freq; // Frequency in KHz
uint8_t usec; // pronto uSec/tick
uint8_t once;
uint8_t rpt;
// Validate the string
for (cp = s; *cp; cp += 4) {
byp(&cp);
if ( !ishex(cp[0]) || !ishex(cp[1]) ||
!ishex(cp[2]) || !ishex(cp[3]) || !isblank(cp[4]) ) return false ;
}
// We will use cp to traverse the string
cp = s;
// Check mode = Oscillated/Learned
byp(&cp);
if (htow(cp) != 0000) return false;
cp += 4;
// Extract & set frequency
byp(&cp);
freq = (int)(1000000 / (htow(cp) * 0.241246)); // Rounding errors will occur, tolerance is +/- 10%
usec = (int)(((1.0 / freq) * 1000000) + 0.5); // Another rounding error, thank Cod for analogue electronics
freq /= 1000; // This will introduce a(nother) rounding error which we do not want in the usec calcualtion
cp += 4;
// Get length of "once" code
byp(&cp);
once = htow(cp);
cp += 4;
// Get length of "repeat" code
byp(&cp);
rpt = htow(cp);
cp += 4;
// Which code are we sending?
if (fallback) { // fallback on the "other" code if "this" code is not present
if (!repeat) { // requested 'once'
if (once) len = once * 2, skip = 0 ; // if once exists send it
else len = rpt * 2, skip = 0 ; // else send repeat code
} else { // requested 'repeat'
if (rpt) len = rpt * 2, skip = 0 ; // if rpt exists send it
else len = once * 2, skip = 0 ; // else send once code
}
} else { // Send what we asked for, do not fallback if the code is empty!
if (!repeat) len = once * 2, skip = 0 ; // 'once' starts at 0
else len = rpt * 2, skip = once ; // 'repeat' starts where 'once' ends
}
// Skip to start of code
for (i = 0; i < skip; i++, cp += 4) byp(&cp) ;
// Send code
enableIROut(freq);
for (i = 0; i < len; i++) {
byp(&cp);
if (i & 1) space(htow(cp) * usec);
else mark (htow(cp) * usec);
cp += 4;
}
}
//+=============================================================================
#if TEST
int main ( )
{
char prontoTest[] =
"0000 0070 0000 0032 0080 0040 0010 0010 0010 0030 " // 10
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 20
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 30
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 40
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 50
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 60
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 70
"0010 0010 0010 0030 0010 0010 0010 0030 0010 0010 " // 80
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 90
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 100
"0010 0030 0010 0aa6"; // 104
sendPronto(prontoTest, PRONTO_ONCE, PRONTO_FALLBACK); // once code
sendPronto(prontoTest, PRONTO_REPEAT, PRONTO_FALLBACK); // repeat code
sendPronto(prontoTest, PRONTO_ONCE, PRONTO_NOFALLBACK); // once code
sendPronto(prontoTest, PRONTO_REPEAT, PRONTO_NOFALLBACK); // repeat code
return 0;
}
#endif // TEST
#endif // SEND_PRONTO
#if 0
//******************************************************************************
// Sources:
// http://www.remotecentral.com/features/irdisp2.htm
// http://www.hifi-remote.com/wiki/index.php?title=Working_With_Pronto_Hex
//******************************************************************************
#include <stdint.h>
#include <stdio.h>
#define IRPRONTO
#include "IRremoteInt.h" // The Arduino IRremote library defines USECPERTICK
//------------------------------------------------------------------------------
// Source: https://www.google.co.uk/search?q=DENON+MASTER+IR+Hex+Command+Sheet
// -> http://assets.denon.com/documentmaster/us/denon%20master%20ir%20hex.xls
//
char prontoTest[] =
"0000 0070 0000 0032 0080 0040 0010 0010 0010 0030 " // 10
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 20
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 30
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 40
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 50
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 60
"0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 70
"0010 0010 0010 0030 0010 0010 0010 0030 0010 0010 " // 80
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 90
"0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 100
"0010 0030 0010 0aa6"; // 104
//------------------------------------------------------------------------------
// This is the longest code we can support
#define CODEMAX 200
//------------------------------------------------------------------------------
// This is the data we pull out of the pronto code
typedef
struct {
int freq; // Carrier frequency (in Hz)
int usec; // uSec per tick (based on freq)
int codeLen; // Length of code
uint16_t code[CODEMAX]; // Code in hex
int onceLen; // Length of "once" transmit
uint16_t* once; // Pointer to start within 'code'
int rptLen; // Length of "repeat" transmit
uint16_t* rpt; // Pointer to start within 'code'
}
pronto_t;
//------------------------------------------------------------------------------
// From what I have seen, the only time we go over 8-bits is the 'space'
// on the end which creates the lead-out/inter-code gap. Assuming I'm right,
// we can code this up as a special case and otherwise halve the size of our
// data!
// Ignoring the first four values (the config data) and the last value
// (the lead-out), if you find a protocol that uses values greater than 00fe
// we are going to have to revisit this code!
//
//
// So, the 0th byte will be the carrier frequency in Khz (NOT Hz)
// " 1st " " " " length of the "once" code
// " 2nd " " " " length of the "repeat" code
//
// Thereafter, odd bytes will be Mark lengths as a multiple of USECPERTICK uS
// even " " " Space " " " " " " "
//
// Any occurence of "FF" in either a Mark or a Space will indicate
// "Use the 16-bit FF value" which will also be a multiple of USECPERTICK uS
//
//
// As a point of comparison, the test code (prontoTest[]) is 520 bytes
// (yes, more than 0.5KB of our Arduino's precious 32KB) ... after conversion
// to pronto hex that goes down to ((520/5)*2) = 208 bytes ... once converted to
// our format we are down to ((208/2) -1 -1 +2) = 104 bytes
//
// In fariness this is still very memory-hungry
// ...As a rough guide:
// 10 codes cost 1K of memory (this will vary depending on the protocol).
//
// So if you're building a complex remote control, you will probably need to
// keep the codes on an external memory device (not in the Arduino sketch) and
// load them as you need them. Hmmm.
//
// This dictates that "Oscillated Pronto Codes" are probably NOT the way forward
//
// For example, prontoTest[] happens to be: A 48-bit IR code in Denon format
// So we know it starts with 80/40 (Denon header)
// and ends with 10/aa6 (Denon leadout)
// and all (48) bits in between are either 10/10 (Denon 0)
// or 10/30 (Denon 1)
// So we could easily store this data in 1-byte ("Denon")
// + 1-byte (Length=48)
// + 6-bytes (IR code)
// At 8-bytes per code, we can store 128 codes in 1KB or memory - that's a lot
// better than the 2 (two) we started off with!
//
// And serendipitously, by reducing the amount of data, our program will run
// a LOT faster!
//
// Again, I repeat, even after you have spent time converting the "Oscillated
// Pronto Codes" in to IRremote format, it will be a LOT more memory-hungry
// than using sendDenon() (or whichever) ...BUT these codes are easily
// available on the internet, so we'll support them!
//
typedef
struct {
uint16_t FF;
uint8_t code[CODEMAX];
}
irCode_t;
//------------------------------------------------------------------------------
#define DEBUGF(...) printf(__VA_ARGS__)
//+=============================================================================
// String must be block of 4 hex digits separated with blanks
//
bool validate (char* cp, int* len)
{
for (*len = 0; *cp; (*len)++, cp += 4) {
byp(&cp);
if ( !ishex(cp[0]) || !ishex(cp[1]) ||
!ishex(cp[2]) || !ishex(cp[3]) || !isblank(cp[4]) ) return false ;
}
return true;
}
//+=============================================================================
// Hex-to-Byte : Decode a hex digit
// We assume the character has already been validated
//
uint8_t htob (char ch)
{
if ((ch >= '0') && (ch <= '9')) return ch - '0' ;
if ((ch >= 'A') && (ch <= 'F')) return ch - 'A' + 10 ;
if ((ch >= 'a') && (ch <= 'f')) return ch - 'a' + 10 ;
}
//+=============================================================================
// Hex-to-Word : Decode a block of 4 hex digits
// We assume the string has already been validated
// and the pointer being passed points at the start of a block of 4 hex digits
//
uint16_t htow (char* cp)
{
return ( (htob(cp[0]) << 12) | (htob(cp[1]) << 8) |
(htob(cp[2]) << 4) | (htob(cp[3]) ) ) ;
}
//+=============================================================================
// Convert the pronto string in to data
//
bool decode (char* s, pronto_t* p, irCode_t* ir)
{
int i, len;
char* cp;
// Validate the Pronto string
if (!validate(s, &p->codeLen)) {
DEBUGF("Invalid pronto string\n");
return false ;
}
DEBUGF("Found %d hex codes\n", p->codeLen);
// Allocate memory to store the decoded string
//if (!(p->code = malloc(p->len))) {
// DEBUGF("Memory allocation failed\n");
// return false ;
//}
// Check in case our code is too long
if (p->codeLen > CODEMAX) {
DEBUGF("Code too long, edit CODEMAX and recompile\n");
return false ;
}
// Decode the string
cp = s;
for (i = 0; i < p->codeLen; i++, cp += 4) {
byp(&cp);
p->code[i] = htow(cp);
}
// Announce our findings
DEBUGF("Input: |%s|\n", s);
DEBUGF("Found: |");
for (i = 0; i < p->codeLen; i++) DEBUGF("%04x ", p->code[i]) ;
DEBUGF("|\n");
DEBUGF("Form [%04X] : ", p->code[0]);
if (p->code[0] == 0x0000) DEBUGF("Oscillated (Learned)\n");
else if (p->code[0] == 0x0100) DEBUGF("Unmodulated\n");
else DEBUGF("Unknown\n");
if (p->code[0] != 0x0000) return false ; // Can only handle Oscillated
// Calculate the carrier frequency (+/- 10%) & uSecs per pulse
// Pronto uses a crystal which generates a timeabse of 0.241246
p->freq = (int)(1000000 / (p->code[1] * 0.241246));
p->usec = (int)(((1.0 / p->freq) * 1000000) + 0.5);
ir->code[0] = p->freq / 1000;
DEBUGF("Freq [%04X] : %d Hz (%d uS/pluse) -> %d KHz\n",
p->code[1], p->freq, p->usec, ir->code[0]);
// Set the length & start pointer for the "once" code
p->onceLen = p->code[2];
p->once = &p->code[4];
ir->code[1] = p->onceLen;
DEBUGF("Once [%04X] : %d\n", p->code[2], p->onceLen);
// Set the length & start pointer for the "repeat" code
p->rptLen = p->code[3];
p->rpt = &p->code[4 + p->onceLen];
ir->code[2] = p->rptLen;
DEBUGF("Rpt [%04X] : %d\n", p->code[3], p->rptLen);
// Check everything tallies
if (1 + 1 + 1 + 1 + (p->onceLen * 2) + (p->rptLen * 2) != p->codeLen) {
DEBUGF("Bad code length\n");
return false;
}
// Convert the IR data to our new format
ir->FF = p->code[p->codeLen - 1];
len = (p->onceLen * 2) + (p->rptLen * 2);
DEBUGF("Encoded: |");
for (i = 0; i < len; i++) {
if (p->code[i+4] == ir->FF) {
ir->code[i+3] = 0xFF;
} else if (p->code[i+4] > 0xFE) {
DEBUGF("\n%04X : Mark/Space overflow\n", p->code[i+4]);
return false;
} else {
ir->code[i+3] = (p->code[i+4] * p->usec) / USECPERTICK;
}
DEBUGF("%s%d", !i ? "" : (i&1 ? "," : ", "), ir->code[i+3]);
}
DEBUGF("|\n");
ir->FF = (ir->FF * p->usec) / USECPERTICK;
DEBUGF("FF -> %d\n", ir->FF);
return true;
}
//+=============================================================================
//
void irDump (irCode_t* ir)
{
int i, len;
printf("uint8_t buttonName[%d] = {", len);
printf("%d,%d, ", (ir->FF >> 8), ir->FF & 0xFF);
printf("%d,%d,%d, ", ir->code[0], ir->code[1], ir->code[2]);
len = (ir->code[1] * 2) + (ir->code[2] * 2);
for (i = 0; i < len; i++) {
printf("%s%d", !i ? "" : (i&1 ? "," : ", "), ir->code[i+3]);
}
printf("};\n");
}
//+=============================================================================
//
int main ( )
{
pronto_t pCode;
irCode_t irCode;
decode(prontoTest, &pCode, &irCode);
irDump(&irCode);
return 0;
}
#endif //0