Mikanum/IRremote/irRecv.cpp

224 lines
5.8 KiB
C++
Raw Permalink Normal View History

2023-01-19 08:45:51 +01:00
#include "IRremote.h"
#include "IRremoteInt.h"
//+=============================================================================
// Decodes the received IR message
// Returns 0 if no data ready, 1 if data ready.
// Results of decoding are stored in results
//
int IRrecv::decode (decode_results *results)
{
results->rawbuf = irparams.rawbuf;
results->rawlen = irparams.rawlen;
results->overflow = irparams.overflow;
if (irparams.rcvstate != STATE_STOP) return false ;
#if DECODE_NEC
DBG_PRINTLN("Attempting NEC decode");
if (decodeNEC(results)) return true ;
#endif
#if DECODE_SONY
DBG_PRINTLN("Attempting Sony decode");
if (decodeSony(results)) return true ;
#endif
#if DECODE_SANYO
DBG_PRINTLN("Attempting Sanyo decode");
if (decodeSanyo(results)) return true ;
#endif
#if DECODE_MITSUBISHI
DBG_PRINTLN("Attempting Mitsubishi decode");
if (decodeMitsubishi(results)) return true ;
#endif
#if DECODE_RC5
DBG_PRINTLN("Attempting RC5 decode");
if (decodeRC5(results)) return true ;
#endif
#if DECODE_RC6
DBG_PRINTLN("Attempting RC6 decode");
if (decodeRC6(results)) return true ;
#endif
#if DECODE_PANASONIC
DBG_PRINTLN("Attempting Panasonic decode");
if (decodePanasonic(results)) return true ;
#endif
#if DECODE_LG
DBG_PRINTLN("Attempting LG decode");
if (decodeLG(results)) return true ;
#endif
#if DECODE_JVC
DBG_PRINTLN("Attempting JVC decode");
if (decodeJVC(results)) return true ;
#endif
#if DECODE_SAMSUNG
DBG_PRINTLN("Attempting SAMSUNG decode");
if (decodeSAMSUNG(results)) return true ;
#endif
#if DECODE_WHYNTER
DBG_PRINTLN("Attempting Whynter decode");
if (decodeWhynter(results)) return true ;
#endif
#if DECODE_AIWA_RC_T501
DBG_PRINTLN("Attempting Aiwa RC-T501 decode");
if (decodeAiwaRCT501(results)) return true ;
#endif
#if DECODE_DENON
DBG_PRINTLN("Attempting Denon decode");
if (decodeDenon(results)) return true ;
#endif
#if DECODE_LEGO_PF
DBG_PRINTLN("Attempting Lego Power Functions");
if (decodeLegoPowerFunctions(results)) return true ;
#endif
// decodeHash returns a hash on any input.
// Thus, it needs to be last in the list.
// If you add any decodes, add them before this.
if (decodeHash(results)) return true ;
// Throw away and start over
resume();
return false;
}
//+=============================================================================
IRrecv::IRrecv (int recvpin)
{
irparams.recvpin = recvpin;
irparams.blinkflag = 0;
}
IRrecv::IRrecv (int recvpin, int blinkpin)
{
irparams.recvpin = recvpin;
irparams.blinkpin = blinkpin;
pinMode(blinkpin, OUTPUT);
irparams.blinkflag = 0;
}
//+=============================================================================
// initialization
//
#ifdef USE_DEFAULT_ENABLE_IR_IN
void IRrecv::enableIRIn ( )
{
// Interrupt Service Routine - Fires every 50uS
cli();
// Setup pulse clock timer interrupt
// Prescale /8 (16M/8 = 0.5 microseconds per tick)
// Therefore, the timer interval can range from 0.5 to 128 microseconds
// Depending on the reset value (255 to 0)
TIMER_CONFIG_NORMAL();
// Timer2 Overflow Interrupt Enable
TIMER_ENABLE_INTR;
TIMER_RESET;
sei(); // enable interrupts
// Initialize state machine variables
irparams.rcvstate = STATE_IDLE;
irparams.rawlen = 0;
// Set pin modes
pinMode(irparams.recvpin, INPUT);
}
#endif // USE_DEFAULT_ENABLE_IR_IN
//+=============================================================================
// Enable/disable blinking of pin 13 on IR processing
//
void IRrecv::blink13 (int blinkflag)
{
#ifdef BLINKLED
irparams.blinkflag = blinkflag;
if (blinkflag) pinMode(BLINKLED, OUTPUT) ;
#endif
}
//+=============================================================================
// Return if receiving new IR signals
//
bool IRrecv::isIdle ( )
{
return (irparams.rcvstate == STATE_IDLE || irparams.rcvstate == STATE_STOP) ? true : false;
}
//+=============================================================================
// Restart the ISR state machine
//
void IRrecv::resume ( )
{
irparams.rcvstate = STATE_IDLE;
irparams.rawlen = 0;
}
//+=============================================================================
// hashdecode - decode an arbitrary IR code.
// Instead of decoding using a standard encoding scheme
// (e.g. Sony, NEC, RC5), the code is hashed to a 32-bit value.
//
// The algorithm: look at the sequence of MARK signals, and see if each one
// is shorter (0), the same length (1), or longer (2) than the previous.
// Do the same with the SPACE signals. Hash the resulting sequence of 0's,
// 1's, and 2's to a 32-bit value. This will give a unique value for each
// different code (probably), for most code systems.
//
// http://arcfn.com/2010/01/using-arbitrary-remotes-with-arduino.html
//
// Compare two tick values, returning 0 if newval is shorter,
// 1 if newval is equal, and 2 if newval is longer
// Use a tolerance of 20%
//
int IRrecv::compare (unsigned int oldval, unsigned int newval)
{
if (newval < oldval * .8) return 0 ;
else if (oldval < newval * .8) return 2 ;
else return 1 ;
}
//+=============================================================================
// Use FNV hash algorithm: http://isthe.com/chongo/tech/comp/fnv/#FNV-param
// Converts the raw code values into a 32-bit hash code.
// Hopefully this code is unique for each button.
// This isn't a "real" decoding, just an arbitrary value.
//
#define FNV_PRIME_32 16777619
#define FNV_BASIS_32 2166136261
long IRrecv::decodeHash (decode_results *results)
{
long hash = FNV_BASIS_32;
// Require at least 6 samples to prevent triggering on noise
if (results->rawlen < 6) return false ;
for (int i = 1; (i + 2) < results->rawlen; i++) {
int value = compare(results->rawbuf[i], results->rawbuf[i+2]);
// Add value into the hash
hash = (hash * FNV_PRIME_32) ^ value;
}
results->value = hash;
results->bits = 32;
results->decode_type = UNKNOWN;
return true;
}