mathe/Library/PackageCache/com.unity.shadergraph@14.0.8/Documentation~/Rounded-Polygon-Node.md
2024-09-20 20:30:10 +02:00

83 lines
3.8 KiB
Markdown

# Rounded Polygon Node
## Description
Generates a rounded polygon shape based on input **UV** at the size specified by inputs **Width** and **Height**. The input **Sides** specifies the number of sides, and the input **Roundness** defines the roundness of each corner.
You can connect a [Tiling And Offset Node](Tiling-And-Offset-Node.md) to offset or tile the shape. To preserve the ability to offset the shape within the UV space, the shape does not automatically repeat if you tile it. To achieve a repeating rounded polygon effect, first connect your **UV** input through a [Fraction Node](Fraction-Node.md).
You can only use the Rounded Polygon Node in the **Fragment** [Shader Stage](Shader-Stage.md).
## Ports
| Name | Direction | Type | Binding | Description |
|:------------ |:-------------|:-----|:---|:---|
| UV | Input | Vector 2 | UV | Input UV value |
| Width | Input | Float | None | Rounded Polygon width |
| Height | Input | Float | None | Rounded Polygon height |
| Sides | Input | Float | None | Number of sides of the polygon |
| Roundness | Input | Float | None | Roundness of corners |
| Out | Output | Float | None | Output value |
## Generated Code Example
The following example code represents one possible outcome of this node.
```
void RoundedPolygon_Func_float(float2 UV, float Width, float Height, float Sides, float Roundness, out float Out)
{
UV = UV * 2. + float2(-1.,-1.);
float epsilon = 1e-6;
UV.x = UV.x / ( Width + (Width==0)*epsilon);
UV.y = UV.y / ( Height + (Height==0)*epsilon);
Roundness = clamp(Roundness, 1e-6, 1.);
float i_sides = floor( abs( Sides ) );
float fullAngle = 2. * PI / i_sides;
float halfAngle = fullAngle / 2.;
float opositeAngle = HALF_PI - halfAngle;
float diagonal = 1. / cos( halfAngle );
// Chamfer values
float chamferAngle = Roundness * halfAngle; // Angle taken by the chamfer
float remainingAngle = halfAngle - chamferAngle; // Angle that remains
float ratio = tan(remainingAngle) / tan(halfAngle); // This is the ratio between the length of the polygon's triangle and the distance of the chamfer center to the polygon center
// Center of the chamfer arc
float2 chamferCenter = float2(
cos(halfAngle) ,
sin(halfAngle)
)* ratio * diagonal;
// starting of the chamfer arc
float2 chamferOrigin = float2(
1.,
tan(remainingAngle)
);
// Using Al Kashi algebra, we determine:
// The distance distance of the center of the chamfer to the center of the polygon (side A)
float distA = length(chamferCenter);
// The radius of the chamfer (side B)
float distB = 1. - chamferCenter.x;
// The refence length of side C, which is the distance to the chamfer start
float distCref = length(chamferOrigin);
// This will rescale the chamfered polygon to fit the uv space
// diagonal = length(chamferCenter) + distB;
float uvScale = diagonal;
UV *= uvScale;
float2 polaruv = float2 (
atan2( UV.y, UV.x ),
length(UV)
);
polaruv.x += HALF_PI + 2*PI;
polaruv.x = fmod( polaruv.x + halfAngle, fullAngle );
polaruv.x = abs(polaruv.x - halfAngle);
UV = float2( cos(polaruv.x), sin(polaruv.x) ) * polaruv.y;
// Calculate the angle needed for the Al Kashi algebra
float angleRatio = 1. - (polaruv.x-remainingAngle) / chamferAngle;
// Calculate the distance of the polygon center to the chamfer extremity
float distC = sqrt( distA*distA + distB*distB - 2.*distA*distB*cos( PI - halfAngle * angleRatio ) );
Out = UV.x;
float chamferZone = ( halfAngle - polaruv.x ) < chamferAngle;
Out = lerp( UV.x, polaruv.y / distC, chamferZone );
// Output this to have the shape mask instead of the distance field
Out = saturate((1 - Out) / fwidth(Out));
}
```